THE CATALYSTS ACTIVE AND SELECTIVE IN OXIDATIVE COUPLING OF METHANE

Kiyoshi OTSUKA.* Kiyotaka JINNO, and Akira MORIKAWA

Department of Chemical Engineering, Tokyo Institute of
Technology, Ookayama, Meguro-ku, Tokyo 152

Active and selective catalysts in oxidative coupling of methane were looked for over many metal oxides (25 oxides). In general, the oxides of rare earth elements showed higher C_2 -selectivities than 75%. Among the metal oxides tested, $\mathrm{Sm}_2\mathrm{O}_3$ was the most active and selective catalyst in the formation of C_2 -compounds (selectivity 93%).

Methane, one possible raw meterial, is the most abundant component of natural gas. Oxidative dehydrogenation and subsequent coupling of methane to ethane and ethylene ($\mathrm{CH_4}+\mathrm{O_2} \rightarrow \mathrm{C_2H_6}$, $\mathrm{C_2H_4}$, $\mathrm{CO_2}$, $\mathrm{H_2O}$) is of an attractive attempt to use the methane as a precursor for ethylene. Keller and Bhasin 1 reported that the catalysts containing the oxides of Pb. Bi, Sn. Sb. Tl. Cd. or Mn were the most active catalysts for the formation of $\mathrm{C_2}$ -compounds ($\mathrm{C_2H_4}+\mathrm{C_2H_6}$) with selectivities of %50%. Hinsen et al. 2,3 reported that the PbO supported by $\mathrm{SiO_2}$ was the best with respect to the $\mathrm{C_2}$ -selectivity which reached 72%, but its catalytic activity was low. As far as we know, this was the highest $\mathrm{C_2}$ -selectivity ever reported. In this communication, we will describe the results of screening for the catalysts which exhibit better catalytic activity and selectivity of $\mathrm{C_2}$ -compounds.

The experiments were carried out using a conventional flow system under atmospheric pressure. The experimental conditions were as follows; T=973 K, P_{02}^{o} (pressure of oxygen at the entrance of the reactor)=0.4 kPa, $P_{CH_4}^{o}$ =18.2 kPa, P_{He} =82.5 kPa. The selectivity of C_2 -compounds is defined as the percentage of converted methane reacted to C_2H_6 and C_2H_4 .

Various rare earth metal oxides, PbO, Bi $_2$ O $_3$, SnO $_2$, Ga $_2$ O $_3$, GeO $_2$, In $_2$ O $_3$, ZnO, CaO, and CdO without any carriers have been tested for activity and selectivity of C $_2$ -compounds. The products were only C $_2$ H $_6$, C $_2$ H $_4$, CO $_2$, and H $_2$ O. No other products such as C $_3$ - or C $_4$ -hydrocarbons, aldehydes, or alcohols were observed. The results are shown in Figs. 1-a and 1-b, respectively. Figure 1-a shows that the catalytic activity in the formation of C $_2$ -compounds (C $_2$ H $_6$ +C $_2$ H $_4$) is the largest for Sm $_2$ O $_3$. The oxides tested can be put in order of their catalytic activities per unit surface area in the formation of C $_2$ -compounds as follows; Sm $_2$ O $_3$ >PbO>Bi $_2$ O $_3$, Ho $_2$ O $_3$ >Gd $_2$ O $_3$ >Er $_2$ O $_3$ >Tm $_2$ O $_3$, Yb $_2$ O $_3$, Y $_2$ O $_3$ >La $_2$ O $_3$, Nd $_2$ O $_3$, Eu $_2$ O $_3$, Dy $_2$ O $_3$, Lu $_2$ O $_3$, CaO>ZnO>PrO $_x$, TbO $_x$ >CeO $_2$, Sc $_2$ O $_3$, GeO $_2$, In $_2$ O $_3$, SnO $_2$. Figure 1-b shows that although the C $_2$ -selectivity of PbO is fairly large (47%), there are many metal oxides giving better C $_2$ -selectivities, i.e., Bi $_2$ O $_3$, GeO $_2$, CdO, CaO, and the oxides of rare earth elements. The C $_2$ -selectivities of the rare earth metal oxides are all larger than 75% for the reacted methane except those of CeO $_2$, PrO $_x$, and TbO $_x$ (x may be in between 1.50 and 1.71).

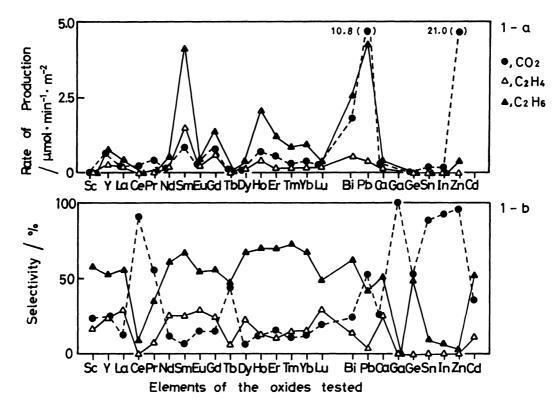


Fig. 1. 1-a: Catalytic activities of the oxides. 1-b: Selectivities.

Except the latter three oxides, the oxides of lanthanide including lanthanum showed especially high $\rm C_2$ -selectivities (>80%). The selectivities of the $\rm Sm_2O_3$ and $\rm Dy_2O_3$ reached 93% which is the highest value ever reported. The conversion of oxygen for the $\rm Sm_2O_3$ and $\rm Dy_2O_3$ (W/F=0.002 gs ml⁻¹) were 53 and 84%, respectively. According to Hinsen et al.³), the oxygen conversion under their experimental conditions (T=1013 K, $\rm P_{02}^{\rm o}$ =7 kPa, $\rm P_{\rm CH_4}^{\rm o}$ =70 kPa, W/F=1.55 gs ml⁻¹) was 22.7% for the PbO/SiO₂. Although no direct comparison among the activities of the catalysts is possible because of large difference in reaction conditions, higher oxygen conversion observed for the $\rm Sm_2O_3$ and $\rm Dy_2O_3$ in this work under much lower W/F compared to that of Hinsen et al. may indicate that the activities of these catalysts are better than that of PbO/SiO₂.

In conclusion, the highest selectivity and catalytic activity of the $\mathrm{Sm}_2\mathrm{O}_3$ in the formation of C_2 -compounds suggest that this oxide is the most promising catalyst for oxidative coupling of methane. Ho₂O₃, Gd₂O₃, Er₂O₃, Tm₂O₃, Yb₂O₃, Y₂O₃, and Bi₂O₃ are also good catalysts on the basis of both activity and selectivity in the formation of C_2 -compounds.

References

- 1) G.E. Keller and M.M. Bhasin, J. Catal., 73. 9 (1982).
- 2) W. Hinsen and M. Baerns, Chem. Ztg., 107, 223 (1983).
- 3) W. Hinsen, W. Bytyn, and M. Baerns, Proc. 8th Int. Congr. Catal., 3, 581 (1984).

(Received January 16, 1985)